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LETTER TO THE EDITOR 

Ground-state energy of a particle in a polygonal box 

Jayanta K Bhattacharjee and Kalyan Banerjee 
Department of Physics, Indian Institute of Technology, Kanpur 208016, India 
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Abstract. We find the ground-state energy of a particle enclosed in a regular polygon of 
n sides by perturbing about the equivalent circle and thereby setting up a n-‘  expansion. 
The first correction is O(n-3)  and hence a two-term answer is very accurate for polygons 
with many sides. 

The ground-state energy of a quantum particle confined in a two-dimensional regular 
polygonal box can be solved exactly only in the special cases of the triangle, square 
and the limiting case of the circle. While the determination of the ground-state energy 
for the circle and square is an elementary exercise the solution to the triangle problem 
is more formidable (Krishnamurthy et a1 1982). The corresponding problems in 
classical physics are the flow through a pipe of polygonal cross section, the torsion of 
a cylinder of polygonal cross section or the electrostatic energy of an uniformly charged 
cylinder of similar geometry. The classical problems like their quantum counterpart 
can be solved for the circle, square and triangle. It was shown some time ago (Ferrell 
and Bray 1976) that for the classical problem the solution for a regular polygon of n 
sides can be obtained by perturbing the solution for the circle in powers of n-I and 
thereby setting up a n-’ expansion, which is pretty accurate at low orders. In this 
letter we point out that the ground-state energy of a particle in a regular polygon of 
n sides can be obtained in a perturbation expansion in n-’ and a low-order result can 
be accurate for large n and reasonable for n = 3. 

We consider a polygonal box of n sides and of area A. A circle of equal area and 
centred at the centre of the regular polygon is considered and as the zeroth-order 
approximation the particle is confined in the equivalent circle of radius U. Clearly 

a2=A/.rr. (1) 

The ground-state energy of the particle in this circular box is 

h2 5’ h2  (2.41)2 A’ 7~ 

m a 2  2m a’ 2m A 
E --d=------ - (2.41)2 0 -  

where to is the first zero of the zeroth-order Bessel function and is known to be to = 2.41. 
If we use this energy to find the ground state of the square box, then we underestimate 
by 8%, while for a triangular box we underestimate by 21 YO. Considering the crudeness 
of the approximation this is already somewhat rcmarkable. 

We now proceed to obtain the first correction to the circle. We focus on one of 
the n sectors produced by the polygon, i.e. - n/ n s 8 s ir/ n. The radius r of a point 
on the polygon is now a function of 6 and the deviation from the radius ‘a’  of the 
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circle of equal area can be written as (using small-angle approximations and to the 
lowest order in n - I )  

A r / u  = ( r (  e )  - a ) / a  = ;e2 -:( r/n)’ 

= f c,, cos rive c,, = 2 ( - l ) ” / n 2 v 2  
“ = I  

( 3 )  

with con = 0, as the areas of the circle and polygon are equal. The wavefunction at 
this order can be written as 

(4) 

where kg= 2mE0/h2  and we must have at first order of smallness (i.e. first order in c v n )  

+ ( r )  = J o ( k o r ) + x  dv , ( r )  cos rive = J o ( k o r ) +  $ , ( r ,  6 )  

h 2  v2*, = Eo*, + E ,  *o -- 
2m 

and the boundary condition 

O =  ~ ( a - A r ) = J o ( k o a ) - k o A r J b ( k o a ) + ~ l ( a ,  0)  

= -koJ;(koa)  1 c,, cos nvO+C d , , ( a )  cos nv8. 
Y 

Clearly, 

d,, ( a  ) = koJb( koa 1 C,n ( 6 )  

do( a )  = 0. (7)  

and 

From (4) and ( 5 )  it is clear that dn(  r )  = J , ( k o r ) ,  and do(r )  = .lo( kor ) ,  which forces E ,  = 0 
and a complete solution of the problem is obtained to this order as 

E = Eo (8) 

To get the first correction to energy we need to proceed to the next order. The 
wavefunction + to this order can be written as 

The boundary condition needs to be satisfied to order ct, and Taylor expanding to 
the required order we can find g v n ( a ) .  To determine the energy correction E * ,  we 
need go( r )  alone. This can be seen from the fact that to satisfy the Schrodinger equation 
to the second order of smallness 

h 2  
2m v2*2 = Eo*2 + E d 0  -- 

and the only part which involves the energy E2 is the purely r-dependent part of lcIz 
which is given by go( r ) .  Thus go( r )  satisfies the equation 
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or 

where x = kor. The boundary condition on go(x) is obtained from (10) by working to 
second order. We find 

For large n, JLf l (  k0a) /J , , (  koa)  = nu/ koa and hence, to leading order in n, (13)  is 

where 5 ( z )  is the Riemann zeta function. 
We now need to solve equation (12). The homogeneous solution has to be Jo( k o r ) ,  

the other linearly independent solution being ill behaved at r = O  and hence not 
admissible. Denoting the particular integral by P (  kor ) ,  we can write 

go(x) = AJo(x) + P(X) 
where the constant A can be determined by 
zeroth-order solution Jo(x) over the original 
now requires 

P(k0a)  = -- 2(koa)2 ? T , ( k o U ) 5 ( 3 )  
n3  

(15 )  
requiring go(x) to be orthogonal to the 
circle. The boundary condition of (14) 

since Jo(koa)  = 0. To find the particular integral the simplest procedure is to try a 
power series expansion 

P(x)  = c aflx2n. (17)  
f l = l  

A five-term expansion gives P (  k o a )  = -0.62 E2 / Eo,  leading to 
E2 9.35(3) 10.8 _---- - - 
Eo n3  n3  

Thus, with the first correction included 
h2  57 

2m A 
E=--(2.41)2 

For n = 3, this formula yields a 10% overestimate, while for n = 4 it overestimates by 
7.5%. For boxes with larger n the formula is expected to be extremely accurate. 

We conclude by noting that equation (18) can be improved by adding a phenomeno- 
logical n-4 term which is designed to give the exact answer at n = 3 .  This leads to 
(note that the actual expansion would have n-4 as the next order term, see (13))  

h2 57 ( 1:.8 1:S) 
2m A 

E = - ~ ( 2 . 4 1 ) ~  1 - t y - y  

the overshoot at n = 4 being 4%. 
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